

PHYS 1135: General Physics I (With Lab)

2022 Spring Session				
Total Class Sessions: 25	Instructor: Staff			
Class Sessions Per Week: 5	Classroom: TBA			
Total Weeks: 5	Office Hours: TBA			
Class Session Length (Minutes): 145	Language: English			
Credit Hours: 5	Total Laboratory Sessions: 10			

Course Description:

This course studies the basic theories and principles of physics. Topics covered include Newton's Three Laws; Gravitation; Kinematics; Energy and Work; Linear Momentum; Angular Momentum and General Rotation; Fluid Wave; Motion; The Ideal Gas Law. This course aims to introduce basic concepts of Physics and use vivid models and teaching measures to develop students' interest on Physics. Includes laboratory.

Learning objectives:

The ultimate goal is for students to be able to carry out open-inquiry investigations to solidify their knowledge of physics. Also, it requires them to plan and implement data collection strategies in relation to particular scientific questions. Meanwhile, it educates student to connect and relate knowledge across various scales, concepts, and representations in and across domains.

Course Materials:

Physics for Scientists and Engineers, 4th ed. by Giancoli.

Course Assignments:

Quizzes:

There will be 7 quizzes administered through the whole semester and the LOWEST two scores will be dropped. Quizzes will always be completed in the first ten minutes of class. The quiz problems will be similar to problem sets and examples on slides. There will be no make-up quizzes.

Exams:

Midterm Exam

There will be two midterm exams in this course. The midterm exams will be based on concepts covered in class. They will be in-class, close-book and non-cumulative.

Final Exam

The final will be cumulative and close-book. Note that the final will not be taken during the normal class times. Exact time for final will be announced later.

Problem Sets:

This will cover the following topics: Kinematics, Newton's Law of Motion, Gravitation, Work and Energy, Rotational Motion, Linear Momentum, Fluids, Wave Motion, Sound, and The Ideal Gas Law.

Lab Assignments:

It is expected that all lab reports will be neatly typed (word processed) with college level grammar and spelling. Each report should include the following sections: The purpose of the experiment, the physical phenomenon observed and the concept or numerical constant to be verified; data collected and graphs of results with clearly labeled axes; an explanation and interpretation of the results and how they compare to the stated objective. Questions related to the experiment should be included and answered completely and clearly.

Course Assessment:

Quizzes (5 out of 7)	10%
Midterm Exam 1	15%
Midterm Exam 2	15%
Problem Sets	15%
Labs	15%
Final Exam	30%
Total	100%

Grading Scale (percentage):

A+	A	A-	B +	B	B-	C+	С	C-	D+	D	D-	F
98-	93-	90-	88-	83-	80-	78-	73-	70-	68-	63-	60-	<60
100	97	92	89	87	82	79	77	72	69	67	62	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Chengdu University of Technology's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your

learning.

Course Schedule:

Class	Topics	Assignments
Class 1~5	 Course & Syllabus Overview Measurement and Estimating Describing Motion: Kinematics in One Dimension Kinematics in Two or Three Dimensionss Vectors Scalar VS. Vector Speed & Velocity Displacement and Distance Dynamics: Newton's Law of Motion Newton's First Law Understand idea of force and motion Newton's Second Law Acceleration, velocity and displacement Centripetal acceleration Applications of Newton's Second Law: Friction Static Friction Sliding Friction Rolling Friction Newton's Third Law 	 Quiz 1&2 Textbook review Finish the hard copy of problem set about Kinematics and Newton's Law of Motion assigned by teacher
Class 6~10	 Circular Motion & Drag Forces Uniform circular motion Dynamics of uniform circular motion: Universal Law of Gravitation Gravitation and Newton's Synthesis Work and Energy Idea of negative work Potential Energy Elastic Potential Energy Gravitational Potential Energy 	 Quiz 3&4 Textbook review Finish the hard copy of problem set about Gravitation and Work and Energy assigned by teacher

	Conservation of Energy				
	Equation of Conservation of Energy				
	• Center of mass				
	➢ How to find the Centroid				
	Linear Momentum				
	Conservation of linear momentum				
	Different types of collisions				
	Elastic and Inelastic collisions	• Midterm			
	Apply equations of momentum conservation	 Textbook review Finish the hard conv of problem 			
	and energy conservation to model elastic/inelastic collision				
	elastic/melastic confision	copy of problem set about			
Class 11~15	Rotational Motion	Rotational Motion			
	Angular Momentum and General Rotation	and Linear			
		Momentum			
	 Angular Displacement 	assigned by			
	 Angular Velocity 	teacher			
	Angular Acceleration				
	 Rigid body dynamics: angular acceleration, 				
	angular velocity and centripetal acceleration				
	Static Equilibrium and Elasticity and Fracture				
	• Fluids				
	Introduction to fluid dynamics and statics				
	> The hydraulic press				
	 Archimedes' principle 				
	➢ Bernoulli's equation	• Quiz 5&6			
		Textbook review			
	Oscillations	• Finish the hard			
Class 16~20	Wave Motion	copy of problem			
		set about Fluids			
	 The Wave Question Eraguancy and Pariod 	and Wave Motion			
	 Frequency and Period Wave energy and power transmitted 	assigned by teacher			
	 Wave energy and power transmitted Doppler effect 				
	 Superposition of waves 				
	 Superposition of waves Interference: the double-slit experiment 				
	 Standing waves and musical instruments 				
Class 21~25	Sound	• Quiz 7			
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				

	 Source Speed Media Intensity and Pitch of Sound Musical Scales and Resonance Temperature and Thermal Expansion The Ideal Gas Law Modes of Transmitting Heat Kinetic Theory of Gases Heat and the First Law of Thermodynamics Second Law of Thermodynamics Wrap-up 	 Finish the hard copy of problem set about Sound and The Ideal Gas Law assigned by teacher Final exam (cumulative) TBA
Lab Schedule	: Matching; One-Dimensional Motion	
-	n of Vectors; Velocity and Acceleration	
	's Second Law; Projectile Motion	
	etal Force; Static and Kinetic Friction	
-	nd Energy; Conservation of Energy; Buoyant Forces	
	ns and Momentum; Rotational Inertia	
Lab 7: Harmor	ic Motion; Pendulum	
Lab 8: Standin	g Waves; Resonance Tube; Oscillations of a String	
Lab 9: Phase C	Changes; Heat Capacity	
Lab 10: Heat o	f Fusion; Heat of Vaporization	
Lab Final Pre	sentation	